Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 39886 Accepted Submission(s): 14338
Problem Description
Now I think you have got an AC in Ignatius.L’s “Max Sum” problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1,S2,S3,S4...Sx,...Sn(1≤x≤n≤1,000,000,−32768≤Sx≤32767)S_1, S_2, S_3, S_4 ... S_x, ... S_n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S_x ≤ 32767)S1,S2,S3,S4...Sx,...Sn(1≤x≤n≤1,000,000,−32768≤Sx≤32767). We define a function sum(i,j)=Si+...+Sj(1≤i≤j≤n)sum(i, j) = S_i + ... + S_j (1 ≤ i ≤ j ≤ n)sum(i,j)=Si+...+Sj(1≤i≤j≤n).
Now given an integer m(m>0)m (m > 0)m(m>0), your task is to find m pairs of i and j which make sum(i1,j1)+sum(i2,j2)+sum(i3,j3)+...+sum(im,jm)sum(i_1, j_1) + sum(i_2, j_2) + sum(i_3, j_3) + ... + sum(i_m, j_m)sum(i1,j1)+sum(i2,j2)+sum(i3,j3)+...+sum(im,jm) maximal (ix≤iy≤jxi_x ≤ i_y ≤ j_xix≤iy≤jx or ix≤jy≤jxi_x≤ j_y ≤ j_xix≤jy≤jx is not allowed).
But I`m lazy, I don’t want to write a special-judge module, so you don’t have to output m pairs of iii and jjj, just output the maximal summation of sum(ix,jx)(1≤x≤m)sum(i_x, j_x)(1 ≤ x ≤ m)sum(ix,jx)(1≤x≤m) instead.
Input
Each test case will begin with two integers mmm and nnn, followed by nnn integers S1,S2,S3...SnS_1, S_2, S_3 ... S_nS1,S2,S3...Sn.
Process to the end of file.Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 32 6 -1 4 -2 3 -2 3
Sample Output
68
题意
将一个长度为nnn的数组分成不相交的mmm段,求这mmm段的和的最大值
思路
状态:dp[i][j]dp[i][j]dp[i][j]表示在前jjj个数中取出iii段的最大和
状态转移方程:dp[i][j]=max(dp[i−1][k],dp[i][j−1])+num[j] (i−1≤k≤j−1)dp[i][j]=max(dp[i-1][k],dp[i][j-1])+num[j]\ \ (i-1\leq k \leq j-1)dp[i][j]=max(dp[i−1][k],dp[i][j−1])+num[j] (i−1≤k≤j−1)
由于mmm范围未知,n≤106n\leq 10^6n≤106,所以二维的dp方程无论是在时间上还是在空间上都是不允许的。
那么我们就需要对这个方程进行优化:
不难发现当前状态只与两个状态有关:
- 第jjj个数和前j−1j-1j−1个数在一段里
- 第jjj个数和前j−1j-1j−1个数不在一段里。
根据这一点,我们把状态降成一维的数组,dp[j]dp[j]dp[j]表示前jjj个数分iii段时的最大和,然后用sum[j−1]sum[j-1]sum[j−1]来表示状态一的前j−1j-1j−1个数在前i−1i-1i−1段的最大和,dp[j−1]dp[j-1]dp[j−1]表示状态二的前j−1j-1j−1个数在前iii段的最大和。
当前状态的转移方程为:dp[j]=max(dp[j−1],sum[j−1])+num[j]dp[j]=max(dp[j-1],sum[j-1])+num[j]dp[j]=max(dp[j−1],sum[j−1])+num[j],持续更新dp与sum数组的值
AC代码
#include#include #include #include #include #include #include